如何摆脱信息茧房?(2)

来源:电子信息对抗技术 【在线投稿】 栏目:综合新闻 时间:2021年12月17日 01:35:12
作者:网站采编
关键词:
摘要:非常厉害吧,为此当时他认为 触屏技术、眼球追踪、语言识别甚至互联网人格的相关研究会是大趋所势 ,目前看来这些在现在均已经实现。 第三阶段:

非常厉害吧,为此当时他认为触屏技术、眼球追踪、语言识别甚至互联网人格的相关研究会是大趋所势,目前看来这些在现在均已经实现。

第三阶段:

尼葛洛庞帝在上述基础上,进一步设想了智能计算机将为人类生活带来巨大改变。

他预言到下一步互联网会进入「极端个人化的信息时代」,即算法推荐;在后信息时代里,电脑、手机APP会基于它对你的了解为自身推荐定制化信息。

从前,大众媒体把一模一样的信息通过广播或电视无差别的推荐给每个人;而未来APP会主动对信息进行筛选,并通过界面为使用者制作独一无二的“个人摘要”。

那么,如果按照此指导手册发展,这意味着什么呢?

这不仅让我心中一惊喜,目前买很多电子设备都不用看使用说明书都可以「语言、行为」控制它,以后岂不是更方便么?

但尼葛洛庞帝认为,美好未来虽到来也会在不知不觉中侵蚀人们的智慧和知识;比如:工作机会的减少,导致更多互联网创业者借助线上平台创造更多知识来与企业协同。

背后意味着复杂的工作交给机器解决,人类创作性工作将很难一步登上山顶,甚至非常优秀的创作也很难人性化的被发现,与此未来你可能更多的是和“机器交流”。

那么,严重的是机器取代大部分人力的潮流必不可当,针对发展肯定力大于弊;更加严重的是随着算法推荐带来的信息茧房和数字鸿沟,会加深一个人与另一个人的距离感。

比如:你习惯看历史知识,平台围绕历史中心化展开;若一个天天看娱乐的人被推送的都是八卦,甚至像我这种经常搜“学习内容”的人,试想下种种场景“会带来什么后果”呢?

我们很难逃出“习惯的周边三公里”。如果不经过主动思考判断或故意去搜寻,会陷入知识获取单一化,没有社会统一认识中,严重者还会造成与社会和企业脱节。

一个现实的案例是:

我看到很多离职3个月以上的人,与他们沟通就已经陷入自身的“信息茧房”,对跨岗一丁点技能还能理解,对跨公司业务就直接出现“黑匣子状态”。

不可否认,我们正在经历尼葛洛庞帝教授第三阶段的预测;人们无法阻止数字化的变化,它就像无法对抗大自然一样;但至少每个人可以了解它是如何形成的?如何一步一步吞噬着人们独有的思考模式。

当然,这一切背后离不开人们常说的“算法”或者“个性化推荐”,但它并不是罪魁祸首;那它是什么呢?给自身带来哪些影响呢?

算法原理

从框架而言,推荐系统一般包含“召回”和“排序”两方面。

不论是信息还是消费类电商平台,多半以此类型来训练用户,而算法又基于「内容」和「用户行为」两大类别展开。

我们知道普通人的思维方式分为两种类型:

1)线性思维,2)非线性思维」

前者是把认识停留在对事物的抽象而非本质上,并以这样的抽象为出发点,片面、直线的解释某件事;后者是把认识停留在对事物的抽象层并以基石出发来看底层原理。

机器学习方式和人相似,也分为线性和多种思维(学习)模型,最主要区别是一方面偏向基础原理,一方面偏向多元化加工;从专业角度出发市面一共有6种常用方式:

1)过滤算法,2)矩阵算法;3)因子分解机,4)逻辑回归;5)梯度提升决策树,6)深度神经网络过滤

它们用在什么位置呢?

要知道,人们看到的所有信息均展示在APP的首页或分类上,在推荐系统中它们属于最上层的展示层,算法属于中间层,数据是最底层;而算法的主要功能就是排序和召回,上述的六种模型均服务它们两者。

举个例子:

我们经常使用某款APP,它习惯性的抓取自己点击的每个图片或者下方的内容,然后以此用打标签的方式归类在后台中,该行为属于排序,进一步说平台可以收集一个账号的多个标签排序。

可当自身许久没有打开该APP时,机器就基于自身感兴趣的内容,通过push,短信的方式召回我们。

大部分大平台(小红书、抖音、快手)的推荐系统分人工干预和自动推荐两种,前者顾名思义人来操作,后者是给机器设定固定时间来循环使用。

自动推荐是什么呢?

若进一步展开解释,如抖音和头条的监督学习算法

文章来源:《电子信息对抗技术》 网址: http://www.dzxxdkjs.cn/zonghexinwen/2021/1217/423.html



上一篇:毛利率连续三年高于平均值,纬德信息怎么做到
下一篇:这项全国职业技能大赛总决赛在重庆电工职院开

电子信息对抗技术投稿 | 电子信息对抗技术编辑部| 电子信息对抗技术版面费 | 电子信息对抗技术论文发表 | 电子信息对抗技术最新目录
Copyright © 2021 《电子信息对抗技术》杂志社 版权所有 Power by DedeCms
投稿电话: 投稿邮箱: